New A Priori FEM Error Estimates for Eigenvalues

نویسندگان

  • Andrew V. Knyazev
  • John E. Osborn
چکیده

We analyze the Ritz–Galerkin method for symmetric eigenvalue problems and prove a priori eigenvalue error estimates. For a simple eigenvalue, we prove an error estimate that depends mainly on the approximability of the corresponding eigenfunction and provide explicit values for all constants. For a multiple eigenvalue we prove, in addition, apparently the first truly a priori error estimates that show the levels of the eigenvalue errors depending on approximability of eigenfunctions in the corresponding eigenspace. These estimates reflect a known phenomenon that different eigenfunctions in the corresponding eigenspace may have different approximabilities, thus resulting in different levels of errors for the approximate eigenvalues. For clustered eigenvalues, we derive eigenvalue error bounds that do not depend on the width of the cluster. Our results are readily applicable to the classical Ritz method for compact symmetric integral operators and to finite element method eigenvalue approximation for symmetric positive definite differential operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization

We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L norm. We then derive optimal a priori error estimates in the H and L norm for a FEM with variational crimes due to numerical integration. As an application we d...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems

We present a new error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. The analysis consists of three steps. First we prove a posteriori estimates for the error in the approximate eigenvectors and eigenvalues. The error in the eigenvectors is measured both in the L' and energy norms. In these estimates the error is bounded in terms of the mesh size, a st...

متن کامل

Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape

The finite element method (FEM) is applied to bound leading eigenvalues of the Laplace operator over polygonal domains. Compared with classical numerical methods, most of which can only give concrete eigenvalue bounds over special domains of symmetry, our proposed algorithm can provide concrete eigenvalue bounds for domains of arbitrary shape, even when the eigenfunction has a singularity. The ...

متن کامل

A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem

In this paper we obtain a priori and a posteriori error estimates for stabilized loworder mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2006